<== you are here

The Loss List - Your Shrinking RF
Energy Misplacement and Loss in Low Band Antenna Systems
An Inventory of Loss Issues and Remedies


Addressing many of the issues below could involve relocating wires, or erecting wires. **Always know the electrical code, including local codes for these installations and their location and follow them.** No dB improvement is worth the risks of insurance-cancelling code violations, possible severe property damage, injury, or even loss of life when these rules are not followed.

Any advice given on this web site shall be construed as withdrawn if following it in a specific location or circumstance involves violating electrical or building codes, unsafe practices or the following paragraph. The reader is solely responsible for knowing codes in effect at their location.

Additionally, do not use any tree for antenna support, which if partly or entirely toppled could fall into or across power lines. Particularly dangerous are primary lines with 13 kV and higher voltages.

At K2AV the base of a 100 foot loblolly pine supporting the 160 Inv L was 25 feet from the base of a planned, now installed 13kV primary pole line along the US 64 service road at 35 feet above ground. That antenna site was abandoned when the power company's plans were certified and funded, and the inverted L was moved to a site near the house.

In the three decades K2AV has owned the property, there have been three major weather events which dropped trees along US 64 and the service road which actually fell across power lines, or would have fallen across the new primary lines. Hurricane Fran put thirty or forty trees onto Progress Energy primary lines along a five mile stretch of US 64. Later an ice storm deposited one to two inches radial ice and took down more trees in our local area with longer power outages than Hurricane Fran. And a "derecho" wind event in places snapped full-grown healthy tree trunks at the base. The damage that 13kV could do, coming back up into the house via a 13 kV charged tree entangling wire and feedline, ranges from destroyed equipment to fire to death.


This section will permanently remain under construction, with items added or modified as new information becomes available. Some items will have their own linked explanatory/remedy sections. Providing explanations and drawings as needed may take quite some time. Hopefully many are self-explanatory with intuitive solutions.

Particularly on 160 meters, it's easy for one's TX signal to be right at the distant end's noise level. The failure to QSO may have far more to do with that far end signal-to-noise ratio than with a pileup, especially when competing stations are all operating split and spread over 5 kHz. On difficult propagation paths your sum of remedied loss issues can raise your signal out of the noise for the DX. Even just another dB TX strength may have gotten your signal copied.

Remember the presentation in . Upgrade project installers who have gone through the Loss List were often surprised by the number and sum of loss factors embedded in their existing setup. Some approached twenty issues for remediation. Items with fairly small loss are listed below because enough small losses add up. The best procedure will be to avoid these in the first place, or repair any issue listed on this page unless you have a specific reason to tolerate or delay fixing.

All of the items on this list have been remediation tasks at correspondent stations. There may be others as we haven't had the time to carefully read through six or seven years of email and notes to make sure we didn't miss anything.

Although we would like to be able to put down precise loss factors for each item, the characteristics of dirt underfoot and random local conductors will cause the degree of loss to vary substantially. What fixes a half dB or less in one place could remedy two dB's in another. The trick is to get them all if you can. We're not trying to prove the list or numbers to skeptics, just make your TX signal louder.

A Listing of Loss Issues

Insufficient or Irregular Radials - Radials are not long enough, not equal length, not uniformly spaced around entire 360 degrees, insufficiently dense, or any combination of these issues. Improve radials to full size, dense and uniform all around, or convert to an FCP.

Avoid Inverted L Bend Supported by Tower - Vertical wire of the inverted L and the tower are essentially primary and secondary windings of an RF transformer. We need to avoid this configuration or take steps to reduce tower RF current driven into lossy ground from the tower base. Supporting the bend in the L with the tower involves additional antenna design steps to minimize loss, possibly making other L support schemes more attractive. If you must use a tower and a tree to support, consider supporting the bend at the tree.

Tower Supported Inverted L Bend Unavoidable or Deliberately Chosen - There are two methods that reduce loss by reducing RF current driven into the ground at the base of the tower. These methods show reduced ground loss in NEC 4.2 comparisons, and in anecdotal results:

For towers 60 feet (18m) and shorter, a solution working in the field, the bend in the L is supported three feet from the tower. The vertical wire is pulled directly down to the FCP center, located 13-15 (4-4.5m) feet away from the tower. This results in a slanted vertical wire roughly 15 degrees off vertical. This method is described in

(Experimental) For towers 65 feet (20m) and taller, the bend and the entire length of the vertical wire are supported 3 feet (1m) from the tower. The FCP is at a minimum 10 feet (3m) above ground. The L/FCP is deliberately isolated from coax, tower and ground, except at a "shorting height". There a 3 foot horizontal shorting wire connects the vertical wire and tower. A table specifies the shorting height per tower height. This method is described in

Tower plus mounted antennas self-resonant on 160 m within half wave radius. - A nearby tower can be a parasitic element and warp the pattern with unwanted nulls. Since the tower was almost surely not prepared with proper radials to be an efficient 160 m parasitic element, this unintended parasitic element will drive 160 m energy into lossy ground at the base.

Running vertical or horizontal wires through or on top of trees or bushes. - Though unavoidable for some, there is a significant body of anecdotal evidence for avoiding this practice if at all possible. It is better to lose a little vertical height to install in the clear. Some controlled experiments are being devised.

FCP, adjusting dimensions to reduce SWR - ** Do not change FCP dimensions. ** This defeats the FCP's cancellation trick responsible for much of the loss savings. It may be tempting because it's an easy reach from ground. The FCP's wire folds are designed to maximally reduce the sum of all their fields at ground. Changing FCP dimensions immediately increases loss, especially over poor and very poor urban/suburban "ground". This was one of the first "gotcha" lessons we learned about the FCP in its early development.

Vertical Wire too Close to Tree Trunk - Vertical, or vertical wire of inverted L or T is too close to tree trunk. Keep separation from the tree trunk at 10 to 16 feet (3-5m). It is better to not go quite as high with the vertical wire than heavily induce the tree trunk. Do not go through the tree with either vertical or horizontal wire.

FCP supported with electric fence insulators on tree trunks, etc - As support for an FCP, do not use electric fence insulators directly mounted to tree trunks, wooden fence posts, sides of houses, etc. If an FCP is sturdily supported at the ends and center, simple devices made from small diameter PVC pipe, etc, can push horizontally running FCP wires a foot away from vertically oriented posts, trunks, and then spray-painted with a color to blend with surroundings.

FCP too close to parallel running dielectric or conductive materials - To the extent possible keep the FCP 5 feet away from parallel running extents of any material. If support posts for a fence are being use to support the FCP as well, try to get the FCP at least two or three feet above the fence. We understand that "appearance" issues at your site may not allow desired clearance. Creating a foot or two horizontal clearance a little below the top of a wooden fence may attain most of the clearance benefit.

Trees, Large Structures Inside Bend of Inverted L - Other than right next to the wire, the highest RF field strengths of an inverted L occur inside the rectangle scribed by vertical, horizontal and ground. A particular lossy item such as a tree inside the bend will result in far more loss in watts than in front of the bend or well out to the sides. We have measured instances of 2-3 dB improvement cutting down trees inside the bend of an L.

Nearby 80m/40m L, Dipole, Vee, OCF, with Unblocked Feedline - On 160 meters, these antennas can look like 160 vertical parasitic elements, with part of the vertical wire (coax shield) laying on the ground. They can severely detune the 160 antenna, or keep adjustments to the 160 antenna from having their usual effect. Worse, some configurations can put a lot of 160m power back down 80/40 feedline and damage unprotected attached equipment.

Miniaturized or Undersized Tuners or Components - Though easily understood for back-packing and summit events, smaller cores and wire sizes, etc. contribute loss that you will want to avoid where possible. The specific devices recommended here are easily home-brewed. Time for component procurement and construction may require planning well ahead of contests.

Using Whatever Toroid and Wire on Hand for the Isolation Transformer - Some number of FCP adopters have mimicked K2AV and W0UCE's pre-publish attempts at FCP feed devices. Like the original attempts, they too have left behind torched wire/toroid devices until finally "giving in" to the published specification, joining W2FMI and the rest of us with #2 powdered iron and teflon sleeved #14 heavy polyimide.

Defective or Unsoldered Connectors - PL259 connectors left unsoldered for testing or quick construction and then forgotten. Connections gradually worsen from increasing corrosion between coax conductors and PL259 metal elements, carbon paths, deteriorated bakelite center material, mold or corrosion debris in space between conducting surfaces. Water inside connector has an open path to wick into shield.

Water Penetration of Coax Woven Shield - Water wicking into the fine wire of the woven shield begins the corrosion. This ultimately causes excessive loss not necessarily visible in changed SWR at the shack. Removing the jacket over the corroded shield sometimes exposes completely green corrosion. Process can be slow and sneaky. The coax can become excessively lossy without changing Z0.

Water Penetration of Stranded Center Conductor or Single Conductor - Probably not as bad as corrosion in the woven shield, but is one more paper-cut loss. Can be slow and sneaky.

Long Run of Too-Small Coax - The smaller the coax the greater the loss. Small is often cheap, with related deterioration of jacket and water ingress. If you're buying amplifiers, you should also be buying quality coax well-suited to the use.

Cheap "Copperweld" Conductors with Insufficient Copper Depth - Sometimes found with bargain "RG-6" coax. Used on 160m, skin effect can be using some portion of the steel for conduction. Inconsequential at satellite frequencies. Test the coax for Z0 = 75 ohms and standard low loss at 1.8 MHz. Will not get into the discussion whether to use RG-6 for TX. We understand why some will make this choice.

Using Coax to Feed Severe Mismatch with Tuner in the Shack - Many antenna solutions really require a tuner at the antenna end of feed coax. Coax loss goes way up if the tuner is in the shack and there is a high current maximum(s) between shack and antenna.

Coax Previously Misused to Feed Severe Mismatch at High Power with Tuner in the Shack - Very high current at current maximum(s) can heat the fine woven shield wire to the point of turning black and melting/partly decomposing dielectric material. Once misused this way, such coax remains lossy even though it may not affect SWR. TDR analysis of coax may show increasing Z every electrical halfwave on the band(s) abuse occurred.

Use of PVC Insulation on Single and Balanced Conductors Carrying RF Current. - The loss tangent for PTFE (Teflon) and PE (Polyethylene) is 0.0002 while the loss tangent for PVC has a 0.01 to 0.05 range. ** Do not use PVC insulation or PVC insulated electrical house wire for RF, especially not outdoors where some PVC formulations deteriorate rapidly.**

Poorly Targeted Use of Insulated Conductors - There are situations where some insulation is simply required. Do not insulate any more than required, and use teflon sleeving for the insulation. Use a single soldered wire wrapped one turn around the antenna wire at the insulation ends to fix the insulation's position. ** Do not use PVC insulation or PVC insulated electrical house wire for this purpose.**

Poorly Targeted Use of Stranded Conductors - Short lengths of new, never-exposed-to-weather fine stranded wire should be used to go around bending points or construct moving drip loops, etc. Stranded wire should be insulated with PE or PTFE ** and the ends sealed against the weather.** Use WireMan #547 or its equivalent (#12 AWG, 259 strands bare copper, black PE jacket) for this purpose. Do not use PVC insulated wire.

FCP, More Spacing Insulators than Needed - The 66 foot 160m FCP is adequately supported with separators every 11 feet. They can be made from pieces of 1/2 inch PVC pipe. The end and center separators can be two inch PVC pipe, or use support cord between trees, etc.

FCP, Insufficient Height - Particularly for poorer "earth" underneath, lower FCP support raises feed impedance of the antenna system, broadens SWR and increases system loss. If at all possible, use a minimum height of 8, preferably 10 feet (2.5 to 3 meters)

FCP, Not Constructing from At Least Solid #12 Bare Wire. - Early, pre-2012 constructed FCP's used various insulated wires, including (now-disapproved) unstripped PVC insulated #14 THHN. Yes, at one point we did use it in an FCP with ladder snaps from 73CNC every 18 inches. Going to bare solid AWG 12 with 7 total separators improved various facets of performance.

FCP, Bends at Other than 1/4, 3/4 Overall Length - The center-most portion of the FCP, e.g. 1/4 point to center to 3/4 point, or -16.5 ft to center to +16.5 ft for a 160m FCP length is the most important for field net cancellation. They need to be in 180 degree opposition. Fold an FCP to navigate corners in layout with a 90 degree angle at the 1/4 or 3/4 point. To go around an inside corner consider 45 degree angles at the 1/4 and 3/4 points which will increase distance from FCP center to dielectric material.

FCP or other Significantly Reactive Counterpoise, No Isolation Transformer - See linked section.

(USA) Using THHN Wire Without Stripping Insulation - Extreme loss in certain tests. More to come. Research underway.

Use your back button to return to the prior page